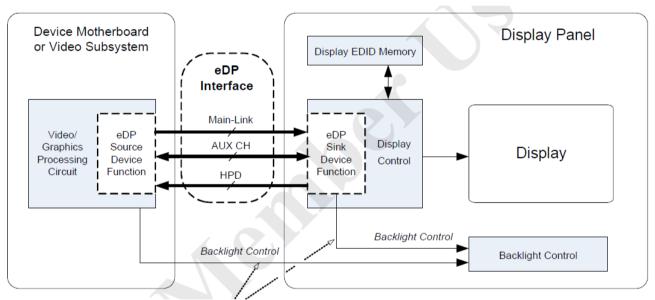
泰克智能座舱显示接口 DP/HDMI

白皮书

Tektronix®

1.1 Display port 及 eDP 介绍与测试

汽车是另一个快速增长的高分辨率视频显示和内容领域。 DisplayPort 和嵌入式 DisplayPort (eDP) 都已在汽车行业引起关注。 当今许多流行的 SoC 都支持 DisplayPort 和 eDP 的输出,而 eDP 是当今笔记本电脑使用的显示面板上的主要输入接口,支持高达 4K 分辨率和低线数。 VESA 刚刚成立了汽车显示连接 SIG,以讨论显示接口要求以及专门针对汽车显示应用的新标准的潜力。


1.1.1 eDP 简介

Embedded Displayport (eDP)是 VESA(视频电子标准协会)制定的用于 Notebook或 PAD 等移动设备的内嵌显示接口,目前官方组织发布的最新版为 1.5。

eDP接口共有 1~4 对 lane 用于数据传输,内嵌时钟。在 RBR, HBR, HBR2 三种不同模式下,单个 lane 速率分别为:

- RBR 1.62Gbps;
- HBR 2.7Gbps;
- HBR2 5.4Gbps;
- HBR3 8.1Gbps

下图为 eDP 接口的结构图

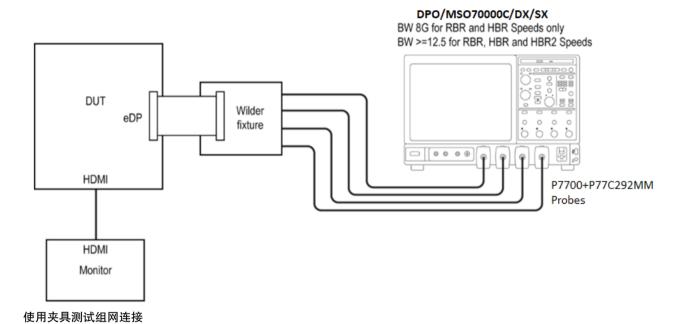
eDP 接口结构图

1.1.2 测试需求

eDP接口测试包括source/sink端的物理层测试。 Source 端根据设备速率,选择对应的高带宽示波器进 行测试。Sink 端的测试主要是根据不同速率进行接收 端的压力容限测试。

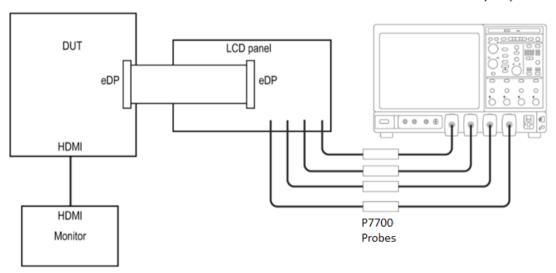
依据 eDP 物理层电气特性规范, Source 端物理层测 试需要完成如下测试项目:

不同的速率,有不同的测试项目要求,每一个测试项 目要求被测发送相应的测试 Pattern。


eDP Source 端测试使用到的高带宽示波器,目前市 场有三个厂商,美国泰克、是德和力科。根据测试标 准,满足RBR和HBR速率,需要至少8GHz带宽示 波器。满足 HBR2 速率测试,需要选择至少 12.5GHz 带宽示波器,采样率 80GS/s 以上。如果需要考虑到 HBR3的速率,示波器带宽需要考虑 16GHz。

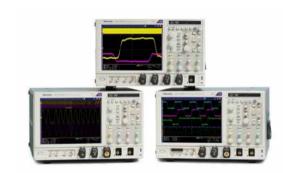
eDP Source 端物理层电气特性测试项目

Test#	Measurement	Pattern	Speed	Limit N	Limit Max	Units	Comments
			RBR		0		
			HBR		0		
			HBR2		0		Mask hit
1	Eye Diagram	CP2520	HBR3		0		should be zero
			RBR		0.5	UI	
			HBR		0.5	UI	
		CP2520	HBR2		0.5	UI	
	Total Jitter	D10.2	HBR3@TP2		0.27	UI	
	Measurement	TPS4	HBR3		0.6	UI	
			RBR		0.41	UI	
			HBR		0.41	UI	
	Deterministic	CP2520	HBR2		0.41	UI	
2	Jitter	TPS4	HBR3		0.41	UI	
			RBR	-5300	300	ppm	
	Main Link		HBR	-5300	300	ppm	
	Frequency		HBR2	-5300	300	ppm	
3	Compliance	D10.2	HBR3	-5300	300	ppm	
	Spread		RBR	30	33	kHz	
	Spectrum		HBR	30	33	kHz	
	Modulation		HBR2	30	33	kHz	
4	Frequency	D10.2	HBR3	30	33	kHz	
			RBR	-5000	0	ppm	
	Spread		HBR	-5000	0	ppm	
	Spectrum		HBR2	-5000	0	ppm	
5	Deviation	D10.2	HBR3	-5000	0	ppm	
			RBR				
	Differential		HBR]
	Transition		HBR2]
6	Time	CP2520	HBR3				Informative
			RBR				
			HBR				
	Intra-pair		HBR2]
7	Skew	CP2520	HBR3				Informative
			RBR				
			HBR]
	AC Common		HBR2]
8	Mode Noise	CP2520	HBR3				Informative


1.1.3 测试方案

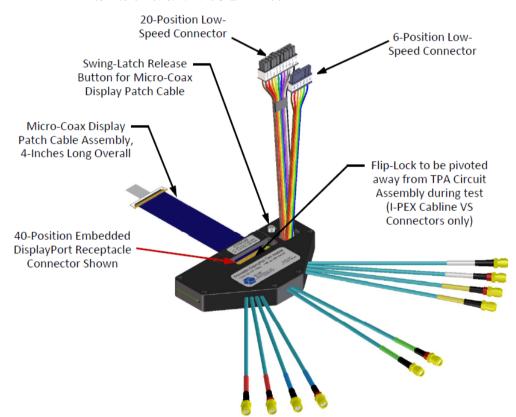
测试组网连接如下:

DPO/MSO70000C/DX/SX


BW 8G for RBR and HBR Speeds only BW >=12.5 for RBR, HBR and HBR2 Speeds BW>=16GHz for RBR,HBR,HBR2 and HBR3 Speeds

使用探头测试组网连接

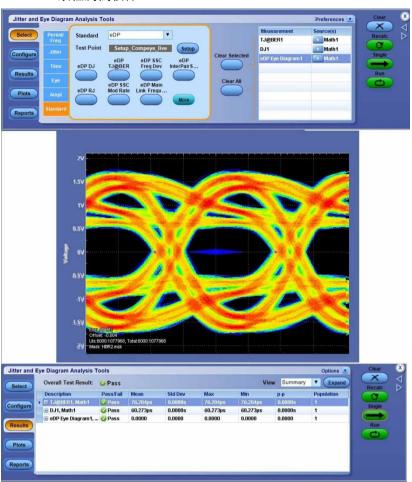
测试需要三个部分:


● 满足 DUT 速率要求的高带宽高采样率实时示波器:

TEK DPO/MSO70000C/DX/SX 系列示波器

● eDP Source 端口标准测试夹具及高速差分探头:

eDP 测试夹具

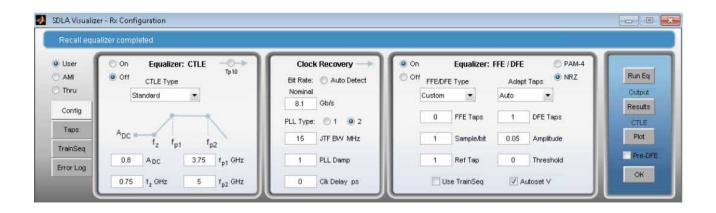


P7700 系列探头

● eDP 一致性测试软件:

eDP Source 端物理层测试软件

TEK eDP 物理层测试软件完全依照测试规范,可以完成前文所述的,各个物理层测试项目。


测试时通过与eDP Source DUT接口匹配的测试夹具,将信号引入到示波器内,示波器上运行的专用eDP物理层软件会分别对每对lane的电学指标按照协议中制定的指标进行分析,最终得出测试结果是否合乎一致性要求。

TEK eDP 物理层测试方案支持使用 eDP 夹具和差分 SMA 探头测试,也可以使用差分探头直接在 eDP

panel 端进行探测。两种方法均可实现最多 4 对 lane 的同时测量。

另外一种方法是使用夹具和 SMA 同轴线缆,将 DUT 发出的信号直接引入示波器,这样支持最多 2 对 lane 的同时测量。

如果 EDP 收端支持 CTLE 或 CTLE+DFE 均衡,眼图测试,需要示波器能够仿真到 CTLE 或 CTLE+DFE 均衡之后的眼图。TEK eDP 物理层测试软件本身支持符合规范要求的 CTLE 仿真,通过搭配 TEK SDLA 串行链路分析软件,可以实现 DFE 的仿真。

1.2 HDMI 介绍与测试

HDMI.(High.Definition.Media.Interface, 高清多媒 体接口).,由于可以同时传输视频和音频数据,且连 接简单,兼容性好等特点,被广泛的应用在消费电 子产品上, 例如电视, 机顶盒, 投影仪也包括汽车 座舱娱乐系统等。HDMI系统可以划分4个种类, Source, Sink, Cable.,和Repeater,为了保证这些 设备良好的兼容性,规范对电气信号做出了信号完整 性的要求。

下图为 HDMI 接口的示意图,适用于规范 HDMI1.4b 和 HDMI2.0。HDMI 接口使用TMDS编码技术, 从上图可以看到,接口共有4对TMDS差分信号,其 中 TMDS.Clock.channel. 作为独立的时钟信号,用于 同步和信号采集: TMDS.channel.0/1/2. 作为数据通道, 用来传输视频和音频数据。例如 HDMI2.0 定义了每个 channel 最高 6Gbps 的速率, 接口的总带宽最高为 3.channel.x. 6Gbps.=18Gbps, 刚好满足 4Kp60Hz 需要的 17.82Gbps 的带宽。

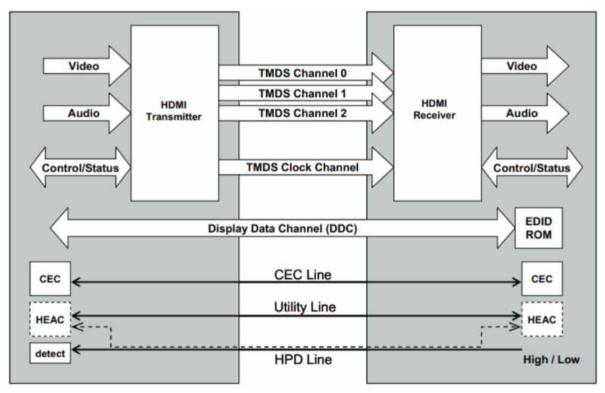


图 1. HDMI 接口示意图

DDC.(Display.Data.Channel). 使用 I2C 协议, source 通过 DDC 读取 Sink. 产品的 EDID (包含 Sink 支持的分辨率,最高速率等信息),确认最佳分辨率的输出。

为了追求更好的视觉效果和体验,人们不满足于4Kp60Hz显示分辨率,也在追求8Kp60Hz和...4Kp120Hz的体验。但是8Kp60Hz.需要的带宽约64G(RGB/YCbCr.4:4:4格式),远远超过了HDMI2...0的支持范围。所以HDMI协会增加HDMI2.1.FRL(Fixed.Rate. Link)模式,实现接口带宽的增加,满足8Kp60Hz需要。同时需要结合相应的YCbCr.4:2:.0编码和视频压缩技术。常用方法

有两种,方法一:提升通道数据速率;方法二:速率不变时,增量通道数量。而最新的 HDMI2.1 FRL 模式这两种方法都有使用。在保持 HDMI 物理接口不变的情况,每个通道支持的速率增加到了 12Gbps.;另外,原来的 TMDS.Clock.channel 重定义为 FRL. Lane3(时钟嵌入在数据流中); .TMDS.Data.0/1/2.分别对应 FRL.lane. 0/1/2,如下图所示,共计有 4个数据通道。这样就实现了最高 48Gbps 的带宽。信号的编码方式从 TMDS的 .8b/10b 改变为 FRL.16b/18b 格式,编码效率更高。

FRL.mode. 可以分为两种模式:

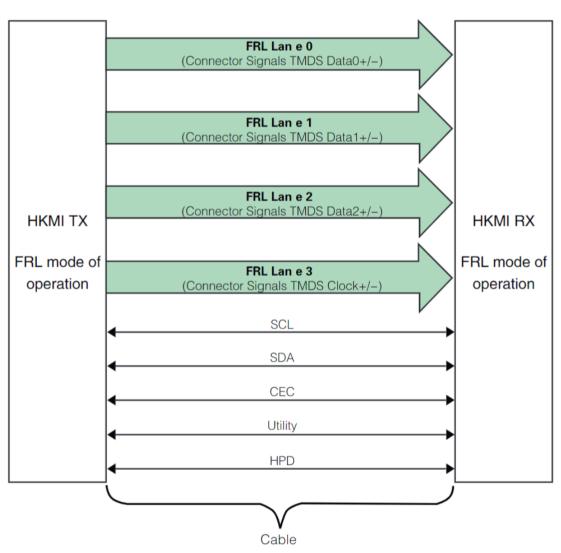


图 2. HDMI 2.1 FRL 模式示意图

3 lanes 工作模式下,仅仅支持 3Gbps 和 6Gbps 两 种速率:未使用的 Lane3, source 和 sink 都需要使 用差分 50Ω ~ 150Ω 端接。

4 lanes 工作模式下,支持 6/8/10/12.Gbps. 四种速率。

1.2.1 HDMI 2.1 源端测试

HDMI2.1 总的测试项目有 9 个,如下表所示,以测试 Lane0 为例。

Measurement	Victim Lane (Lane0)	Aggressor Lane (Lane1/2/3)	
HFR1-1: DC Common Mode	LTP5	LTP6/7/8	
HFR1-2: Vse_Max, Vse_Min	LTP5	LTP6/7/8	
HFR1-3: TRise, TFall	LTP4	LTP2	
HFR1-4: Inter pair Skew	LTP5	LTP6/7/8	
HFR1-5: FRL Rate	LTP3	LTP2	
HFR1-6: Random Jitter	LTP3	LTP2	
HFR1-7: Data lane Eye Diagram	LTP5	LTP6/7/8	
HFR1-8: AC Common Mode Noise	LTP5	LTP2	
HFR1-9: FFE Monotonicity	LTP4	LTP1	

图 3. HDMI 2.1 FRL 测试内容

- 1) 测试信号是固定的码型,测试共定义 8 种码型 Link training pattern 1 ~ 8, 简写为 LTP1 ~ 8。不像 HDMI1.4b/2.0,对码型没有要求。
- 2) 测试信号速率是固定的,不需要随分辨率变化。
- 3) 需要考虑其他 lane 的干扰, 例如 HFR1-1 项目, 测试 Lane0时,需要 Lane0发出 LTP5.码型, Lane 1/2/3. 分别发出 LTP6/7/8 的码型,测试方法 更复杂。

1.2.2 源端 (Source) 测试的难点解决

1.2.2.1 端接电压的实现

泰克示波器及探棒,不需要外接电源,本身不仅可以 提供标准的 3.3V 端接电压, 用于协会要求的一致性 测试。在用户自定义模式下,还提供可调的端接电压, 例如设置 3.0V 的端接电压, 用于验证源端芯片在端 接电压变化时的情况。

图 4. 泰克有源探头端接电压调节

1.2.2.2 单端和差分信号的自动采集

对应单端项目和差分项目,测试时需要分别采集单端 信号和差分信号; 在 HDMI1.4b/2.0 测试中, 都是通 过差分探棒采集差分信号; 手动更改探棒硬件连接后, 采集单端信号。更改连接繁琐,无法自动化,造成了 测试效率低。

泰克 Tri-mode. 探棒(三模探棒), 在测试软件控制 下,交替工作在单端模式(A-GND和B-GND), 无需硬件连接的改变,可以实现8个单端信号的采集, 再自动计算差分信号。从而实现了全部项目的自动化。 除了三模探棒方案外, 泰克还提供两台示波器级联 自动化方案,通过8个channel实现对8个单端信号 的同时采集,测试效率更高。

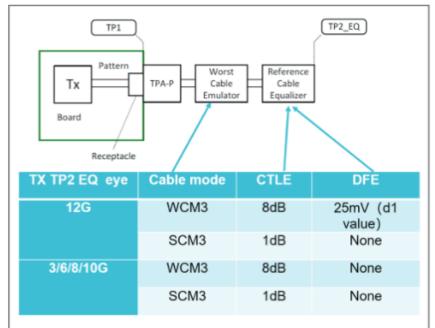
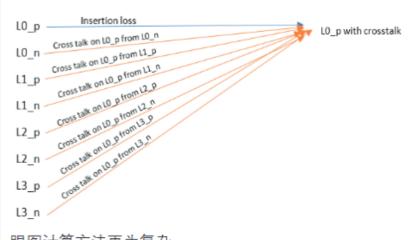


图 5. 泰克三模探棒示意图


1.2.2.3 解决测试复杂化的问题

随着速率的提升, HDMI 规范定义新的均衡技术和 cable. 模型, 也造成了测试过程的复杂化。规范定义两种 Cable mode: Category 3 Worst Cable Mode(WCM3) and Category 3 Short Cable Mode(SCM3)。两种均衡: CTLE 1 ~ 8dB 和 DFE 1-tap d1 value 25mV。

泰克方案针对以上情况,优化了算法,测试时间短。

在 TP1 采集信号后,应用 cable 模型,得到 TP2 位置的波形,再应用参考均衡后得到 TP2_EQ 位置的波形。

眼图计算方法更为复杂 既要考虑 Cable 模型的插入损耗,也要考虑其他数据线 引入的串扰。

图 6. 复杂的信道、均衡及串扰

1.2.2.4 测试速率和码型自动切换

以前测试需要手动更改分辨率,才能实现测试信号 速率的变更。现在泰克通过测试软件与 EDID/SCDC 模拟器的配合, 在 SCDC (Status and Control Data Channel) offset.0x31 中 FRL Rate 设置测试信号速 率, 在 offset 0x41/42 中为每个 Lane 设置码型。实 现了测试需要的速率和码型的自动切换,实现了测试 完全自动化,提高了测试效率。

SCDCS-Sink Configuration

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x30	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	FLT_no _retrain	PR_Enable
0x31	FFE_Levels				FRL_Rate			

SCDCS-Status Flags

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x40	DSC_	FLT_ready	Rsvd (0)	Lane3	Ch2_Ln2	Ch1_Ln1	Ch0_Ln0	Clock
UX40	DecodeFail			_Locked	_Locked	_Locked	_Locked	_Detected
0x41		Ln1_LTF	_req		Ln0_LTP_req			
0x42	Ln3_LTP_req				Ln2_LTP_req			

图 7. EDID/SCDC 示意图

1.2.3 泰克 HDMI2.1 FRL 自动化方案

1.2.3.1 配置一: DPO70000SX 示波器级联方案

两台 DPO70000SX 示波器, 使用 UltraSync cable 同 步级联,可以把 8 个通道的 skew 调整到 1ps 内,确 保所有单端信号采集的同步性。同时采集 8 个单端信 号后,再自动计算生成4对差分信号。测试过程不需 要更改硬件连接,信号路径衰减小,测试速度快,效 率高。

搭配 EDID emulator, 实现速率和码型的自动切换。

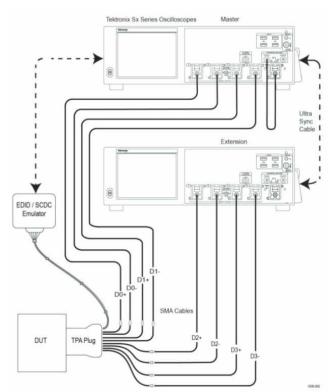


图 8. 泰克 HDMI 2.1 示波器级联测试方案示意图

1.2.3.2 配置二: DPO70000SX 示波器搭 配 Trimode 探棒

利用 Tri-mode 探棒的特性, 在测试软件控制下, 交 替工作在单端模式(A-GND 和 B-GND),分次完 成对 8 个单端信号的采集。测试过程也不需要更改硬 件连接。连接示意图如下,示波器会对探棒进行自动 去嵌,消除探棒对信号的影响。兼顾了成本和效率, 同样通过 EDID emulator 实现自动化的测试。

图 9. 泰克 HDMI2.1 三模探棒测试方案示意图

1.2.3.3 示波器带宽的考量

在 HDMI2.1 规范中推荐示波器带宽是 23GHz 或者 以上。出于成本考虑,大家也许会问,16GHz或者 20GHz 带宽的示波器可以吗? 一方面可以从上升时间 和带宽的角度来看。HDMI2.1 信号允许的最快上升时 间 22.5ps20%-80%。示波器测量到上升时间可以用 如下公式计算:

$$t_{rise(displayed)} = \sqrt{(t_{rise(scope)})^2 + (t_{rise(source)})^2}$$

从下表可以看到带宽越高,上升时间的测量误差就越 1/10

示波器带宽	16GHz BW	20GHz BW	23GHz BW	33GHz BW
典型上升时间 (20%-80%)	18ps	15ps	13ps	9ps
实际测量时间	28.8ps	27.0ps	26.0ps	24.2ps
与实际上升 时间差△ t T _{rise(displayed)} -22.5ps	6.3ps	4.5ps	3.5ps	1.7ps
测量误差比 △ t/22.5ps	28.1%	20.2%	15.5%	7.7%

图 10. 示波器上升时间的考量

从带宽角度看,示波器的带宽定义,是示波器观察到 的正弦波幅度衰减 -3dB 的频率。在实际测试过程中, 非正弦波信号需要考虑 3 次~5 次谐波。HDMI2.1 信 号速率最高 12Gbps, 基频是 6GHz, 3 次谐波频率 是 18GHz, 16GHz 带宽的示波器测量到 3 次谐波成 分会被衰减超过 -3dB。

另一方面被测 HDMI2.1.DUT 的 FRL 最高速率没有达 到上限 12Gbps 的话,可以按照上面的计算方法实际 评估示波器的带宽需求。简单来说, 为了保证更好的 测量精度以及测试的合规性,示波器的带宽越高越好。

1.2.3.4 总结

泰克示波器利用通道可调端接电压, Tri-mode. 探棒 的单端特性 / 示波器级联特性, 以及与 EDID/SCDC 模拟器配合,实现了 HDMI2.1 FRL 源端测试的真正 自动化,提高了测试效率。. 专门针对 FRL 信号的优 化算法,加快了测试速度。从而帮助客户快速验证 HDMI2.1 产品,加速客户产品市场化的过程。

如需所有最新配套资料,请立即与泰克本地代表联系!

或登录泰克公司中文网站: www.tek.com.cn

泰克中国客户服务中心全国热线:400-820-5835

泰克科技(中国)有限公司

上海市浦东新区川桥路1227号

邮编: 201206

电话: (86 21) 5031 2000 传真: (86 21) 5899 3156

泰克成都办事处

成都市锦江区三色路38号 博瑞创意成都B座1604

邮编: 610063

05/2022

电话: (86 28) 6530 4900 传真: (86 28) 8527 0053

泰克北京办事处

北京市朝阳区酒仙桥路6号院 电子城•国际电子总部二期

七号楼2层203单元

邮编: 100015

电话: (86 10) 5795 0700 传真: (86 10) 6235 1236

泰克西安办事处

西安市二环南路西段88号 老三届世纪星大厦26层L座

邮编:710065

电话: (86 29) 8723 1794 传真: (86 29) 8721 8549

泰克上海办事处

上海市长宁区福泉北路518号

9座5楼

邮编: 200335

电话: (86 21) 3397 0800 传真: (86 21) 6289 7267

泰克武汉办事处

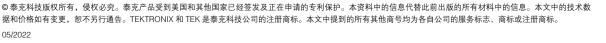
武汉市洪山区珞喻路726号 华美达大酒店702室

邮编: 430074 电话: (86 27) 8781 2760

泰克深圳办事处

深圳市深南东路5002号

信兴广场地王商业大厦3001-3002室


邮编: 518008

电话: (86 755) 8246 0909 传真: (86 755) 8246 1539

泰克香港办事处

香港九龙尖沙咀弥敦道132号 美丽华大厦808-809室 电话: (852) 3168 6695 传真: (852) 2598 6260

更多宝贵资源,敬请登录: WWW.TEK.COM.CN

